756. The Magnetic Susceptibility and Crystal Structure of Nitritobis(ethylenediamine)nickel Perchlorate.

By F. J. LLEWELLYN and J. M. WATERS.

A two-dimensional X-ray analysis of the paramagnetic compound [NiNO₂ en₂]ClO₄ ($\mu = 3.23$ B.M.) has shown the octahedral configuration for nickel. A chain structure is found in which two nickel atoms are linked by the same oxygen atom of a nitrite group present in the nitrito-form. The nickel-oxygen bond distance is 2.58 Å.

IT was reported ¹ that a stable compound nitritobis(ethylenediamine)nickel perchlorate, [NiNO₂ en₂]ClO₄, crystallizes from a solution of bisethylenediaminenickel diperchlorate containing sodium nitrite. The complex was paramagnetic but no accurate susceptibility measurements had been made. This paper describes such measurements and a singlecrystal, two-dimensional, X-ray analysis.

EXPERIMENTAL

Magnetic Susceptibility.—Red needles of the salt $[NiNO_2 en_2]ClO_4$ were prepared (Found: C, 14·7; H, 4·7; Ni, 18·2; N, 21·0; NO₂, 14·2. $C_4H_{16}CINiN_5O_6$ requires C, 14·8; H, 5·0; Ni, 18.1; N, 21.6; NO₂, 14.2%) as described by Curtis.¹ Magnetic-susceptibility measurements from 90° to 298° κ were made on the solid compound by the Gouy method. The results are shown in Table 1, corrections for diamagnetism being made.^{2,3} The compound obeyed the Curie–Weiss law over the temperature range investigated ($\Delta = 107^{\circ}$) and a magnetic moment of 3.23 B.M./molecule was calculated.

Tabl	Е 1.		
Temp. (°к) 10 ⁶ хм'	298° 3186	195° 4338	90° 6521
$\chi_{M}' = \text{molar susceptibility includit}$	ng the dia	magnetic c	orrection.

X-Ray Analysis.-The crystals were needles elongated along [b] and showing well-developed (001) and (011) faces. The crystal data were: $C_4H_{16}ClN_5NiO_6$. M = 324.4. Orthorhombic $a = 15 \cdot 16 \pm 0.06, b = 10.24 \pm 0.04, c = 8.28 \pm 0.03$ Å. U = 1285 Å³. $D_m = 1.66$ (by flotation). Z = 4. $D_c = 1.676$. F(000) = 672. Space group, Pnma $(D_{2h}^{16}, No. 62)$ or $Pn2_1a$ $(C_{2v}^9$, No. 33). Cu- K_{α} radiation; single-crystal rotation and Weissenberg photographs. The statistical test of Howells, Phillips, and Rogers 4 favoured a centrosymmetric (001) projection. Insufficient reflexions for the test (only 42) were recorded for the (100) projection. The (010) projection is centrosymmetric for both space groups. Intensity data were recorded for the h0l, 0kl, and hk0 zones by the multiple-film technique. Relative intensities were measured by visual comparison with a standard scale and converted into structure amplitudes. No absorption corrections were applied since small crystals were used.

The Patterson projections P(u, w) and P(u, v) were consistent with the following atomic co-ordinates for nickel and chlorine atoms: Ni, x = y = z = 0.00; Cl. x = 0.16, y = 0.25, z = 0.43. These atoms correspond to special positions (a) and (c) of space group Pnma or to the general positions of $Pn2_1a$. For space group $Pn2_1a$ the (010) projection was studied by assuming these nickel and chlorine positions and allotting their signs to the majority of the hol amplitudes. In the resulting Fourier synthesis atoms of one ethylenediamine group and oxygens of the perchlorate group were located. After adjustment of co-ordinates by a series of partial difference syntheses, atomic co-ordinates of the second ethylenediamine group were found. They lay directly above the atoms of the first ethylenediamine group and deviations from these positions were not detected. On refinement by further partial-difference syntheses

- ² Jagannadham, Proc. Rajasthan Acad. Sci., 1950, 1, 6; Chem. Abs., 1951, 45, 9948.
 ³ Selwood, "Magnetochemistry," Interscience Publ., Inc., New York, 1943.
- ⁴ Howells, Phillips, and Rogers, Acta Cryst., 1950, 3, 210.

¹ Curtis, Thesis, University of New Zealand, 1954.

the remaining three light atoms (the NO₂ group) were located. The scale factor and isotropictemperature factors for nickel and chlorine were established by least-squares adjustment. An overall temperature factor was assigned to the light atoms, except O6, which required a

FIG. 1. Diagram of the structure viewed along the *c*-axis.

substantially higher value. Structure factors were calculated with the atomic scattering factors of Berghuis et al.⁵ for the light atoms and chlorine, and Thomas-Fermi⁶ values for nickel. The final R-value was 17.3% (all planes).

TUDLE #	л.	А	в	٤.	E,	- 4	,
---------	----	---	---	----	----	-----	---

	x	у	z		х	У	z		x	у	z
Ni	0.500	0.000	0.500	O4	0.101	0.385	0.444	N	0.466	0.026	0.253
ci	0.153	0.250	0.430	O ₅	0.011	0.750	0.038	N ₃	0.062	0.750	0.172
0,	0.229	0.250	0.556	O ₆	0.123	0.750	0.296	C ₁	0.324	-0.059	0.387
0,	0.194	0.250	0.260	N,	0.362	-0.040	0.549	C_{2}^{-}	0.364	0.036	0.265
0 ₃	0.101	0.112	0.444	•							

		Ni	Cl	Light atoms	O,
Projection (010) Projection (001)	B B	$2 \cdot 0 \\ 1 \cdot 4$	$2.5 \\ 1.7$	3.0 3.0	6∙0 6∙0

TABLE 3.

TABLE 4.

Bond lengths (Å) and angles.

Ni-N ₁	 2.17	N ₃ -O ₅	 1.35	N_1 -Ni- N_2	88°	Ni–O ₅ –N ₃	98°
Ni-N.	 2.13	N ₃ -O ₄	 1.38	$Ni - N_1 - C_1$	103	$O_5 - N_3 - O_6 \dots \dots$	173
C1-C,	 1.53	Cl–O	 1.55	$N_1 - C_1 - C_2$	111	$O_1 - Cl - O_2$	108
$N_1 - C_1$	 1.47	Cl–O,	 1.54	$C_1 - C_2 - N_2$	113	$O_2 - Cl - O_3 $	105
N,-C,	 1.55	Cl-O	 1.60	$N\bar{i}-N_2-C_2$	101	$O_{3} - Cl - O_{4}$	120
Ni-O,	 2.58	Cl-O	 1.60	$O_5 - N\bar{i} - N_1$	96	$O_1 - Cl - O_4$	109
•				$O_5 - Ni - N_2 \dots$	89		

The space group $Pn2_1a$ was also applied to the (001) projection. The nickel and the chlorine position obtained from P(u,v) were used to determine the phase angles of the majority of the hk0 planes. Models of the ethylenediamine and the perchlorate group were superimposed on

⁵ Berghuis, Haanappel, Potters, Loopstra, MacGillavry, and Veenendaal, Acta Cryst., 1955, 8, 478.
⁶ Thomas and Fermi; as compiled in "Internationale Tabellen," 1935, Vol. II, p. 572.

the Fourier synthesis by using the known x-co-ordinates as a guide. Atomic positions were obtained, care being taken to avoid introducing a mirror plane. On subsequent refinement by partial-difference syntheses the NO₂ group was located and at the same time mirror planes appeared at $y = \frac{1}{4}$. This and the superposition of the ethylenediamine groups in the (010) projection indicate that any departure from space group *Pnma* must be slight. The final *R*-value was 21.8%.

TABLE 5.

	$\sigma(d)$ (Å)		$\sigma(\theta)$		$\sigma(\theta)$
Light-Light atoms Cl-Light atoms Ni-Light atoms	0·052 0·040 0·037	3 Light atoms Ni-Light-Light atoms	3∙5° 2∙3	Light atom-Ni-Light atom Light atom-Cl-Light atom	1∙3° 2∙1

TABLE 6.

Observed structure amplitudes and calculated structure factors (\times 10).

h	k	ı	$ F_o $	F_{c}	h k l	$ F_o $	F_c	h k l	$ F_o $	F_{e}	h k l	$ F_o $	F_c	h k l	$ F_o $	F_{c}
~	~	~	h0l zone		004	1143	1234	2	269	338	18	$<\!62$	134	3	200	-162
0	0	0	400	6720	1	<87	42	3	< 124	-57	0 5 0	0.0.0	0.01	5	578	-470
2			820	963	2	948	854	4	290	470	250	322	-261	7	<189	145
6			1482	1301	4	205	042 595	6	< 118	300	4	~119	901	9	107	99
8			904	898	ŝ	285	-86	7	161	-82	8	254	_191	020	773	558
10			205	245	6	501	523	8	155	107	10	274	236	202	217	316
12			393	355	7	< 101	102	9	178	-103	12	441	277	4	756	708
14			441	400	8	669	659	10	189	272	14	< 130	-138	6	478	374
16			232	168	9	226	-239				16	$<\!105$	-20	8	629	603
18			134	159	10	356	386	109	216	328				10	145	195
г	0	а	1011	0.0.9	11	318	-236	2	151	154	060	538	- 395		070	100
2	U	T	198	- 334	12	<124	179	3	< 107	80	2	880	780	031	373	-486
3			1094	1345	14	333	301	5	158	220	6	496	257	5	-161	_ 302
4			145	128	15	< 95	68	ő	< 95	-35	š	632	418	7	< 189	-297
5			1004	1188	16	222	216	7	184	238	10	578	481	9	<161	-127
6			273	319	17	167	-167				12	254	193			
7			897	899	18	134	79		hR0 zone		14	341	193	040	1779	2346
8			248	284	105	700	077	200	1041	968	16	$<\!86$	308	2	779	301
10			602	410	105	792	677	4	186	-291	970	400	070	4	829	859
11			560	449	ลี	544	539	8	1007	1016	310	954	-158	0	179	900
12			<118	34	4	399	311	10	212	212	6	<136	-100	10	~ 89	209
$1\bar{3}$			242	198	5	399	370	12	484	418	8	312	63	10	~00	
14			<124	-12	6	367	352	14	484	448	10	241	96	051	306	-242
15			420	551	7	581	519	16	216	136	12	$<\!130$	-58	3	367	290
16			167	-91	8	312	-31	18	130	186	14	$<\!105$	140	5	501	-415
17			302	358	9	318	340	0 1 0	010	070	16	${<}62$	11	7	< 189	165
10			128	40	11	172	141	210	916	-870	080	090	1092	9	<134	-10
0	0	2	1055	1097	12	-97	-89	6	322	188	200	404	477	0.6.0	4 20	-401
ĩ		-	571	627	13	285	410	8	< 105	41	4	304	333	0002	540	158
2			592	572	14	189	-109	10	<124	130	6	484	411	4	667	468
3			107	283	15	199	223	12	192	153	8	379	464	6	484	475
4			511	474	16	44	-70	14	241	-202	10	$<\!130$	272	8	378	419
5			699	-663	0.0.0	000	049	16	< 124	21	12	254	316			
7			100	139	1 0 0 0	222 ~119	-243	18	<92	183	14	245	316	071	<167	-189
8			926	889	2	513	561	0 2 0	799	558	290	300	_166	35	484	- 300
9			140	-92	3	195	217	2 2	991	1222	4	397	326	7	<167	-56
10			544	520	4	560	625	4	335	505	6	<143	152	9	<73	-124
11			318	-82	5	236	-93	6	862	786	8	$<\!136$	-22		• · · ·	
12			602	731	6	205	134	8	855	626	10	< 124	76	080	829	960
13			172	200	7	< 124	-113	10	428	458	12	<100	167	2	578	528
15			~118	26	a a	~194	_319	14	<130	240	14	< 56	-88	4	462	464
1 6			228	118	10	367	430	16	404	350	0 10 0	245	-180	8	~106	10
17			178	-121	11	167	6	18	< 86	141	2 10 0	614	474	0	~ 100	10
18			194	286	12	296	283				4	558	475	091	189	-246
	~				13	< 107	14	230	390	-287	6	341	19	3	189	3
1 L	0	3	642	601	14	216	225	4	619	-649	.8	373	250	5	300	-273
ล้			980	- 947	107	369	5.21	0	<100	278	10	297	473	7	< 123	129
4			501	-504	2 107	383	-371	10	~130	64	12	< 08	177	0 10 0	905	_101
5			776	710	3	<124	125	12	366	-332	0 12 0	212	368	0 10 0	451	221
6			614	567	4	242	-129	14	< 136	117	2	192	200	4	334	214
7			832	845	5	323	343	16	118	121	4	180	284	6	262	330
8			679	-491	6	<124	85	18	< 82	-150	6	154	322			
10			490	013	4	323	300	0 4 0	8000	0970	8	< 49	178	0 11 1	< 167	-126
iĭ			463	333	9	236	215	2 2 2	2009	2570		0kl zope		3	<106	
$\hat{1}\hat{2}$			269	152	10	161	-53	4	732	702	0.0.2	1090	1097	5	< 111	-42
13			302	270	11	259	286	6	1353	1278	4	1196	1235	0 12 0	195	284
14			172	-134	12	$<\!95$	-12	8	609	622	6	164	-244	2	206	254
15			350	380	13	222	300	10	< 130	-41	8	< 189	117	4	123	136
16			222	-105	0.0.0	170	110	12	441	355	10	< 128	-34			
18			210	194	1 0 0 8	172	116	14	428	589	0 1 1	401	140			
10			101	100	-	200	- 410	10	< 112	199	U I I	401	-149			

Atomic co-ordinates from the (010) and (001) projections were used to calculate structure factors (space group Pnma) for the (100) projection. An R-value of 23.8% was obtained.

As seen from Fig. 1, the structure is novel: a linear NO_2 group with one oxygen atom shared between two nickel atoms. In view of this the (001) projection was again considered. Calculations were repeated for space group $Pn2_1a$, thus removing the mirror plane and any restriction on the shape of the NO₂ group. However, it was not possible to fit the usual non-linear nitroform of the NO₂ group to the Fourier syntheses. In addition, attempts to "lose" the mirror plane (by changing the y co-ordinates of the ethylenediamine groups and the perchlorate oxygens or by moving the linear NO₂ group) were unsuccessful.

The x-co-ordinates from the two projections (010), (001) agreed within 0.004 (expressed in fractional co-ordinates) except for atom O_6 where the discrepancy was 0.006. Mean x-coordinates were taken and the final atomic co-ordinates and temperature factors are listed in Tables 2 and 3. The electron density projected down [b] is shown in Fig. 2. The peaks for $O_{\mathbf{s}}$ are more diffuse than the peaks for the other oxygen atoms, which probably accounts for the discrepancy in its co-ordinates. Standard deviations of bond length and bond angle were calculated by the methods of Cruickshank ⁷ and of Cruickshank and Robertson,⁸ respectively. Bond lengths and angles are listed in Table 4, standard deviations in Table 5, and values of F_0 and $F_{\rm c}$ in Table 6.

DISCUSSION

The arrangement of the atoms in the structure is shown in Fig. 1. The nickel atoms are each co-ordinated to two terminal oxygen atoms of two nitrito-groups, each of these oxygen atoms being shared between two nickel atoms. The configuration about the nickel is thus octahedral, which is consistent with the observed paramagnetism. The ethylenediamine rings co-ordinated to the nickel atom are in the gauche form. The NO₂ group is present as the nitrito-group (ONO) with one oxygen atom co-ordinated but the other free and undergoing a relatively large thermal vibration. Any slight deviation from space group *Pnma* not detected on the Fourier syntheses could alter the nickel-oxygen bond distances slightly, but the general features of the structure must be the same. Such a deviation would mean that the bridging oxygen atom need no longer be equidistant from the two nickel atoms. However, the NO₂ group must still remain approximately linear since there is no evidence to suggest an angle approaching 120° which would be expected for a normal nitrite group. The perchlorate group is regularly tetrahedral within the limits of the accuracy attained. None of the bond lengths is particularly notable (again considering the accuracy of the determination) except for the long nickel-oxygen bond distance of 2.58 Å which indicates weak bonding. The ultraviolet spectrum of an aqueous solution was observed to be that of the diaquobisethylenediamine nickel cation plus that of the nitrite ion. Thus the chain structure appears to break down in solution.

Grateful acknowledgment is made to the Research Grants Committee of the University of New Zealand for the award of a Research Fund Fellowship to J. M. W.

CHEMISTRY DEPARTMENT, UNIVERSITY OF AUCKLAND, NEW ZEALAND.

[Present address: (F. J. L.) CHAIRMAN, UNIVERSITY GRANTS COMMITTEE, Wellington, New Zealand.] [R

[Received, June 5th, 1961.]

⁷ Cruickshank, Acta Cryst., 1949, 2, 65.

⁸ Cruickshank and Robertson, Acta Cryst., 1953, 6, 698.